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The growth of linear disturbances in the high-Reynolds-number laminar wake of a 
flat plate aligned with a uniform stream is investigated. The theory is developed 
rationally by use of appropriate wake profiles which originate at the trailing edge as 
double Blasius distributions and thereafter satisfy the equations of motion, in 
contrast to previous theoretical work where model profiles are used. We also 
emphasize the structures and scales of the instability in order to provide a rational 
basis for the development of nonlinear analyses as opposed to existing ad hoc ones. 
Disturbances, in the near wake, respond according to the Rayleigh equation which 
is considered analytically for short-, long- and neutral-wave solutions. For more 
general stability characteristics eigensolutions must be obtained numerically. We 
calculate these at successive wake stations for ‘improved’ basic flow profiles which 
are obtained as solutions of the wake boundary-layer equations. Our numerical 
results indicate fairly good agreement with the asymptotic theory and some 
experimental data (see $7) .  

1. Introduction 
In recent years there has been an increasing interest in wake flows at high 

Reynolds numbers. Such wakes are a common occurrence and are significant in many 
physical situations, the main application being to aerodynamics. In general, these 
flows are unstable in reality and it is desirable, therefore, to obtain a clear theoretical 
understanding of the linear and nonlinear instability mechanisms involved. This 
work is concerned with the high-Reynolds-number motion in the wake of bodies that 
are sufficiently streamlined that attached motion results on the body surface and a 
thin viscous wake is formed just downstream. The case of non-streamlined motion, 
with large-scale separation, is a related but different problem. For simplicity the 
motion considered is that of an infinitely thin aligned flat plate (of finite length) 
travelling with uniform speed in a viscous incompressible fluid. The Reynolds 
number for the flow is large. 

Careful experimental work (Sato & Kuriki 1961 ; Miksad et al. 1982 : Miksad, Jones 
& Powers 1983) tends to indicate that disturbances evolve linearly and two- 
dimensionally in the near wake. Furthermore, the subsequent development of the 
wake downstream is observed to be greatly influenced by such initial disturbances. 
This suggests that the evolution of the wake might be manipulated in a favourable 
way physically, and it seems important, therefore, to possess a quantitative 
theoretical knowledge of the initial evolution of linear fluctuations. 
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The steady basic flow just downstream of the sharp trailing edge of a flat plate can 
be divided into the flow in a thin viscous wake and, outside, a uniform incompressible 
main stream. The flow in the thin wake is governed by the boundary-layer equations 
and in the near wake is described in an important paper by Goldstein (1930). This is 
done by means of asymptotic solutions for small distances from the trailing edge; 
these were later shown to match, in a consistent manner, to the flow just upstream 
of the trailing edge by means of viscous-inviscid interaction in the ‘triple deck’ 
structure (see, Stewartson 1969 ; Messiter 1970). 

Owing to  the complicated nature of the unperturbed steady flow, there have been 
very few theoretical investigations of wake stability assuming the correct wake 
features. Previous investigators have used only model basic-flow profiles (e.g. of 
Gaussian or sech2 form) and have computed growth rates and frequencies a t  the 
position where the model profile roughly corresponds to the physical flow (see 
Hollingdale 1940; McKoen 1957; Sato & Kuriki 1961; Mattingly & Criminale 1972). 
Strictly the Gaussian or sech2 profiles are not correct for the majority of the wake 
since they are, after all, far-wake properties only. Instead the wake profiles should 
be obtained numerically (with a double Blasius profile at the start), from the 
boundary-layer equations, and this is the course we follow. 

Curle (1957) and Taneda (1965) attempted to  find a neutral curve, and thus a 
minimum Reynolds number above which instability first sets in, from solutions of 
the Orr-Sommerfeld equation. These calculations are not entirely satisfactory, 
however, owing to the non-parallelism of the flow in the near wake a t  O( 1 )  Reynolds 
numbers. A strictly better approach, which is adopted here, appears to be the use of 
Rayleigh’s equation together with the quasi-parallel form of the basic flow, for high 
Reynolds numbers. In  this work we present some asymptotic solutions of the 
Rayleigh equation which we feel correspond more to  the physical situation. Of 
interest, therefore, is the work on stability of parallel unbounded inviscid flows. 
Drazin & Howard (1966) considered the long-wave limit and produced some general 
results that can be applied, under certain assumptions, to wakes, jets and shear 
layers. Later in the paper (see 54) we tackle this limit from a different point of view 
for the wake case. 

The strategy adopted in the rest of the paper is as follows. Here two-dimensional 
instability theory seems a quite reasonable starting point for the present rational 
approach, partly because it is slightly less complicated than three-dimensional 
theory and partly because the work is found to  yield predictions (see below) which 
tend to be consistent overall with the experimental evidence available: see also 
earlier comments on two-dimensionality in the experiments. In  $2 the linear stability 
problem is formulated and the choice of scales that  lead to the Rayleigh equation is 
noted. In  $3  the behaviour of short waves (short compared with the boundary-layer 
thickness) is examined. In  $4 long-wave disturbances, long compared with the 
boundary-layer thickness but still shorter than the plate length, are considered. In  
$5 neutral waves are found for the Goldstein-type velocity profiles that  hold in the 
near wake, where in effect the inviscid disturbances originate : see also later remarks. 
In $6 the numerical method used to  solve the Rayleigh equation, together with the 
calculation of basic velocities, is described. Stability calculations are performed for 
basic flow profiles which are solutions of the boundary-layer equations with wake 
boundary conditions that hold in a thin viscous wake downstream of the trailing 
edge. These profiles are nominally exact, and the empiricism involved in the 
determination of the unperturbed flows in previous studies does not arise. In $7 the 
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results are presented and compared with experiments and previous model-profile 
calculations. 

Throughout this paper, the origin of Cartesian coordinates is fixed at  the trailing 
edge with x, y the streamwise and transverse coordinates respectively. The Reynolds 
number is denoted by Re and is assumed to be asymptotically large. Also u, v ,p  are 
the velocities in the x-direction, y-direction and the pressure respectively, and I,+ is 
taken to be the stream function for the two-dimensional flow, 

2. Formulation of linear stability problem 
When the fluid leaves the trailing edge, the laminar boundary layers from either 

side of the plate merge and are accelerated to form a thin wake. The thickness of the 
wake is of order R$ and the motion is governed by the two-dimensional boundary- 
layer equations. The leading-order contribution to the velocity in the x-direction is 
symmetric about the wake centreline (y = 0) and has zero y-derivative at y = 0. Flow 
quantities in general have to be obtained numerically although they can be found in 
the near wake by means of the asymptotic expansions of Goldstein (1930) which are 
used here to represent the unperturbed flow field in some later analysis. It should be 
noted, therefore, that the disturbances covered here initially evolve in the vicinity of 
the trailing edge, a setting that is in line with experimental observations (see 
introduction). 

Formally, then, small perturbations in the flow quantities are introduced in the 
wake beyond the trailing edge, but still outside the interactive triple-deck region (i.e. 
x % R;!). The disturbances are expected to evolve inviscidly and so their x and y 
scales are equal. Also it is reasonable, from a physical point of view, to study 
fluctuations inside the thin wake ; thus the scales are x N y N R;i. It is convenient to 
introduce an order-one parameter a such that x N y - R;;a-I. Physically a is the 
wavenumber of the disturbance when the wake thickness is scaled out. With this set- 
up in mind, let us now verify the conditions under which the Rayleigh stability 
equation ((2.1) below) is valid. 

The starting point is the two-dimensional Navier-Stokes equations. The basic flow 
at a fixed x-station is two-dimensional and can be written as (a(y),O), to leading 
order, where a(y) is quantified later on. On linearization about this basic state the 
equations become 

1 
Ut +au, +va, = -p ,+-  (uzz + u,,), 

Re 
1 

V t  + av, = - p ,  + - (v,, + U Y J ,  
Re 

u,+uy = 0. 

The instability regions considered in this work have the scales mentioned above, and 
so the following coordinate changes are made: 

x = R;&-IX, y = R-ia-ly 1, t = R-' e2a -IT . 
Substitution into the linearized Navier-Stokes equations and rearrangement of 
terms then gives 

U T  +auX +va,, = - p ,  +R;~a(u,, + u ~ , , ~ ) ,  



70 D. T. Papageorgiou and F .  T. Smith 

So for the Rayleigh equation to be valid (i.e. for viscous terms to be negligible) the 
ordering a 4 R% must be observed. For long waves, viscosity will become important 
when a - R$, in which case there is an instability region having an order-one lateral 
and transverse extent, with a free viscous wake layer of thickness R$ embedded 
within it (see also Papageorgiou & Smith 1988). In  the analysis that  follows a obeys 
the inequality R;; < a 4 R!. Further, since ti varies on the O(1)-scale in x and the 
corresponding v is O(R;i), the above demonstrates that  the non-parallel flow effects 
are of higher order, relatively of O(R$) for a of order unity, as is usual in Rayleigh- 
type analysis. 

The Rayleigh equation is derived by the introduction of a stream function and a 
normal-mode analysis. More specifically, the stream function is taken to be 
$(X,y,, 5") = @(yl)exp(ia(X-c5")), where c is the wave speed of the plane wave 
under consideration ; substitution into the scaled linearized and inviscid Navier- 
Stokes equations above gives the classical Rayleigh stability equation 

(g-c) ($"-a2$) = a"$ with @( k 00) = 0. (2.1) 

The boundary condition on @ ensures decay of the disturbance at the edges of the 
wake. Two important limits are most amenable to analysis and are considered in the 
next sections. These are a + co and a + 0, which correspond to the evolution of short- 
and long-wave disturbances respectively. Numerical solutions of (2.1) above are 
presented in $6. 

3. Short waves, a+ 00 

Even though it does not seem possible to obtain analytical solutions of (2.1) for 
general values of a,  an asymptotic description of the solutions for a + 00 and a + 0 
can be constructed and thus a good idea of the scale Lf instability can be gained. Such 
asymptotic analyses have been considered by previous authors but for model 
underlying basic flows alone. Here we study the instability of proper wake profiles 
and in particular we want to emphasize the structures and scales involved in order 
to guide later nonlinear work. In  this section we address short waves, where a + co. 
Physically, the waves are short compared with the wake thickness. 

Inspection suggests the following expansions in the compressed region y = a-lyl 
with Y = O(1): 

( 3 . 1 ~ )  

ti= fa-1AY+A4a-4Y4+... (Y$O),  (3.1 b )  

@ = @o + a-l$l + a-2$2 + a-3$3 + . . . . ( 3 . 1 ~ )  

Equation (3 . lb)  follows from the form of the Blasius distribution as y+O. (If u = 

f'([), = y/d, then f'"+ l/Zf f" = 0 together with f(0) =f'(O) =f'(co)- 1 = 0. 
Numerical integration implies that h = f"(0) = 0.332 . . . and A, = -&Az( < O ) . )  In the 
analysis that follows, the smoothing Goldstein zone, of thickness d, still looks thin 
compared with the lateral extent of the instability region since we consider 
instability wavelengths that satisfy a-l % xi. Substitution of the expansions (3.1 u-c) 
into (2.1), and balance of successive powers of a yields 

c = co + a-lcI + aP2cz + a-3c3 + a-,c4 + . . . , 

@$ = A,eTY, (3.2) 

(3.3) 

where @$ is the solution for Y > 0 and Y < 0 respectively. Next we find 

= $b2 = 0, c, = c2 = c3 = 0. 
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Y = l  CL 

Y = - 1  CL 

(4) 

FIGURE 1.  The various regions in which short waves develop. CL denotes a critical layer, and 
GL the Goldstein layer. 

The solutions (3.3) follow from the fact that if co is non-zero, then the equations 
satisfied by @o, . . . are identical and by a renormalization trivial solutions would 
result. To avoid this (3.3) must hold. Solution (3.2) above reflects the continuity of 
mass flux in the fluid, to leading order, a t  Y = 0. The pressure must also be 
continuous to leading order and by use of the pressure equation 

ia(%-c)u-ia$$ = -iap (3.4) 

together with the solution (3.2), we find a value for c , :  

c, = A. (3.5) 

The first important stage is a t  O(a-2) where the equation for $3, together with its 
boundary condition, is 

The fact that c ,  is real shows that short-wave disturbances are almost neutral and 
have growth rates of order aP3 a t  most. In  what follows we present uniformly valid 
asymptotic solutions that satisfy the boundary conditions ; the 0(01-~) growth rate is 
also calculated. 

It can be seen from (3.5) that (3.6) has a singularity a t  the levels Y = +_ 1. These 
levels correspond to critical layers and the singularities can be smoothed out by the 
introduction of linear viscous layers in their vicinity. The net effect of these layers 
is to give the inviscid solution a phase jump of -ixsgn(d(y = y,)), due to the 
logarithmic singularity there (see Drazin & Reid 1981 : Lin 1955). So, in order to find 
a uniformly valid solution for $3 we must consider solutions in each of the relevant 
physical regions shown in figure 1, and match solutions across them. Further 
matching with the Goldstein layer fixes the value of c4. 

The details of this analysis are given in Appendix A. Briefly then, we solve for $3 

in each of the regions (l),  (2), (3) and (4). This produces six constants of integration 
(see Appendix A) ; four algebraic equations, connecting the constants, are obtained 
from the phase jumps across the critical layers and continuity of mass flux there. The 
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last two equations that enable complete solution are obtained from the dynamics 
inside the Goldstein layer. This is also done in Appendix A. The final result is 

2A,AG + e - e2 S + $8 + 2S(11 - I2  -I3 +I4) -- (3.7) 

where S = 6A,A,/A and Il,12,Z3,14 are definite integrals (constants). From (3.7) the 
imaginary part of c4,cqi, is found to be 

12A4 7c 
CPi = -- 

e2 ’ 

Since A, < 0, cli > 0 and the flow is linearly unstable. The last remark follows from 
the identification of eigensolutions of the Orr-Sommerfeld equation in the limit of 
vanishing viscosity, since the Rayleigh equation has eigenvalues which come in 
complex-conjugate pairs. For a discussion of this point the reader is referred to Lin 
(1955, chapter 8). 

4. Long waves, or+O 
The linear stability of parallel shear flows to long-wavelength perturbations has 

been the subject of a paper by Drazin & Howard (1966). Attention was focused on 
jet and shear-layer-type profiles, and the results can be extended to wakes. It was 
found that the details of the basic velocity profile near the wake centreline are 
insignificant, and results depend on the undisturbed velocity far away from the 
centreline. 

In this section we consider long-wave inviscid perturbations to the wake, using a 
different approach from that of Drazin & Howard’s as well as appropriate wake 
profiles. This approach reveals the scalings and structures of the various regions 
involved as well as their physical effects on the dynamics of the flow. The analysis 
also motivates the nonlinear long-wave stability analysis reported by us elsewhere. 
Asymptotic solutions of (2.1) in the limit a+O are therefore presented. Thus the 
waves are long compared with the wake thickness but still short compared with their 
distance from the trailing edge. The basic flow is ~ ( y ) ,  where a( 00) = 1,  ~ ’ ( 0 )  = 0. 

The boundary condition $’(O) = 0 is imposed on the perturbation stream function ; 
this means that our study is confined to sinuous velocity modes which are believed 
to be more unstable than even ones (Drazin & Howard 1962), and are in accord with 
experimental observations (e.g. the von Karman vortex street). 

The following expansions are appropriate in a region y = O(1) referred to as 
region I :  $ = $o+atlC’1+alC’r,+a%lC’a+a21Cr4+..., (4.1 a )  

c = c,+a&,+ ... . ( 4 . l b )  

The objective is to find the values of co,cl  that  are the solution of the eigenvalue 
problem subject to  the relevant boundary conditions. This is done by means of 
matched asymptotic expansions. 

When (4.1 a, b )  are substituted into (2.1) and powers of at are equated the following 
equations are found for the four leading components of $: 

(u -c , )  @;-a”$, = 0, (4 .2a )  

(4 .2b)  

( 4 . 2 ~ )  
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(a- c,) $; - u“’$, = c1 $; + c2 $I + c ,  $,”, (4.2d) 

( G C , )  $:-a”$4 = c1 $; +c, $; + c ,  $; + c4 $,” + ( @ - c o )  $,. (4.2e) 

The solution of (4.2a) that satisfies $/;t(O) = 0, is the simple displacement solution, 
$, = A,(@- c,) ,  where A ,  is a constant. To satisfy decay a t  infinity we need c,  = 1, and 
so 9, = A,(@- 1). It can be seen that for small A,  the total velocity to leading order 
is u = u(A, + y), which represents a displacement of the basic flow by a small distance 
A,. The displacement effect arises from the dynamics inside the Goldstein layer 
which essentially enables the change in boundary conditions (from no-slip in x .c 0 to 
symmetric wake profiles) to be achieved. The solutions of (4.2b-d) are 

= -cIA,, $, = -c2A0, $, = -c,A,. (4.3) 

These are determined by use of the boundary condition a t  y = 0. Strictly, $1, y?2, $, 
contain additive contributions proportional to (U- 1)  which can be ignored by 
renormalization of A,. Equation (4.2 e ) ,  then, has the following general solution that 
excludes odd contributions : 

1cr4 = A o ( r - 1 ) ~ ~ ~ ( % - l ) 2 d y ~ + d ~ ( a - l ) ~ ~ -  c4Ao(@- 1)  
(a- 1 ) 2  ( @ - 1 ) 2  c 4 A o +  a(O)-l . 

(4.4) 

The undisturbed flow, %(y) ,  is assumed to have exponential decay as IyI + co ; more 
precisely we assume ti 1 - Q e-rlgl as lyl+ 00 where Q ,  y are positive constants. This 
model of exponential decay a t  infinity (rather than the full Blasius one which has 
%i - 1 - (A/lyl) ecY2 as Iyl+ CO, A > 0) has been assumed because analytical progress is 
simpler with the model and it can be used for clarity since the effect of the actual 
decay is qualitatively the same. Also, the model analysis can be used to generate 
ideas and to  provide a structure underlying the numerical calculations to follow. 

Analytically we find that the expansions (4.1 a,  b )  break down when 
y - - (2y)-l In a,  owing to the exponential growth of lcrrq for large y which eventually 
makes the terms a$$, and of the same order. A new outer region I1 must be 
considered therefore, the solutions of which must match with those of region I .  Also, 
in order to satisfy the boundary conditions a t  infinity, a third region, I11 say 
(essentially a potential flow region), is required. Solution and matching across these 
regions fixes the value of cl, which is given below. The details of the asymptotic 
analysis are given in Appendix B. 

The value of c1 is given by, 

It has been shown, therefore, that long waves are almost neutral and have growth 
rates of O(&) as a --f 0 (cf. (4.1 b ) ,  (4.5)) with the leading-order wave speed being equal 
to the free-stream velocity (in fact equal to $(@(co)+U( - 0 0 ) )  in general). This result 
is in complete agreement with Drazin & Howard’s (1966) treatment of long-wave 
linear instability in parallel shear flows, but calculated by a more revealing approach. 
As mentioned earlier it seems that low-frequency/long waves are the relevant 
disturbances in the nonlinear regime. The asymptotic structures indicated here can, 
therefore, be used to extend perturbations into the nonlinear regime. This is done in 
Papageorgiou & Smith (1988). 
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5. Neutral stability 
In  the previous sections the stability of the wake to  short- and long-wave 

disturbances was found to yield almost neutral perturbation characteristics with 
asymptotically small growth rates (cf. (3 .5)  and (4.5)). Here we consider the 
possibility of neutral eigensolutions in the near wake. In order to find neutral modes 
the basic velocity must be considered more closely, of course, and its inflexion points 
identified. The inflexion points are necessary for the existence of neutral solutions. 
This is a well-known result in hydrodynamic stability theory and was first analysed 
by Tollmien (1935); for a description see also Lin (1955) and Drazin & Reid (1981). 
If the inflexion point occurs a t  y = yc then thc neutrally stable cigensolution is 

@ = $,, a = a, > 0, c = U ( y , )  = c,. (5.1) 

In the notation of $3, the streamwise velocity u inside the Goldstein layer can be 
expanded in powers of E ( E  = xi + l ) ,  as follows: 

Here f r  + 2fof;l - fA2  = 0 subject to fo(0)  = f ; l (O)  = 0. Our main concern is with the 
asymptotic form of f o  for large 2. Goldstein finds 

f o  - b02” + e,exp ( -iyo Z 3 { ( y O  + ... I), 
where Z’ = 2 + So and yo, So, E ,  are constants. This flow matches with the Blasius flow 
as 2+ co. Owing to the complicated nature of the true Goldstein flow, we consider 
the following model profile (see earlier comments regarding the choice of a model 
profile) : 

a = %(y) (y = 0(1)), - Ay+A, y2+ ... as y+O+,  (A, < 0),  (5.2) 

and for y = €2, Z = O ( l ) ,  a = #(Z) where 

In (5.3), A ,  is a Goldstein displacement constant and y some positive constant. 
The position of the inflexion point can be found by combining ( 5 . 2 ) ,  (5.3) and 
balancing their second derivatives. This yields an inflexion point a t  2 = -In e + O( 1) 
or y = eL+O(e ) ,  where L = -In€ 9 1. I n  what follows we describe asymptotic 
neutral wave solutions valid for all y. 

Solutions must be found, and matched with neighbouring regions, in each of the 
zones I,, I,, 11, I11 shown in figure 2. The half-plane y 2 0 alone is considered owing 
to the symmetry of the problem. It can be seen from (5.1) and the calculation of the 
inflexion point position that the neutral wave speed must have the expansion 

c = d A + e c , +  ... (=  U(y,)). (5 .3)  

An expansion for a follows from a balance of terms in the Rayleigh equation. This 
gives 

a = 3+a,+O(EL). €L (5.4) 
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I 
EL 

11 , \ \ \ \ \ \ \  '\ \ \ \ \ \ \ \ *  O(€h CL 

t 

With these expansions each of the four regions shown in figure 2, are solved and 
matched consistently in order to calculate c1 and a. in (5.3) and (5.4) respectively. 
This is done in Appendix C, and here we give the final results, 

a = (eL)-l+ ..., 

which imply a neutral wave frequency B = ac = A + O(L-l) .  
It is interesting to note that the neutral waves have short wavelengths. The 

question that arises, therefore, is whether these will dominate over the unstable short 
waves described in $3, and if so over what lengthscales. The results of $3  were based 
on the ordering aP4 = 6. Hence, typical wavelengths for short waves are O(sf) whereas 
for neutral waves they are O(EL). Recall that E = d and z < 0. The lengthscales over 
which short waves are unstable are therefore larger than those over which neutral 
waves can be found (in fact the lengthscales are & and -&ln(z) as x+O). Our 
results indicate, therefore, that even though neutral waves may be possible in 
certain regimes, the unstable waves would take c.';rer and develop into unstable 
perturbations. 

6. Numerical solutions of the Rayleigh equation 
The asymptotic solutions presented in the previous sections do not provide the 

largest amplification rates. These are achieved when the wavelength or the frequency 
are order-one parameters, and the problem must be tackled numerically then. Hence 
we must solve the Rayleigh equation together with the boundary conditions (cf. 
(2.1)), for general values of the wavenumber or frequency and a prescribed 
undisturbed velocity profile. This corresponds to an eigenvalue problem for a and c. 
Results are obtained for two cases. In the first case the eigenvalue problem is solved 
for real values of a which produce complex eigenvalues c in general; this is the 
temporal stability of a prescribed basic flow profile. Second, for w = ac kept real the 
corresponding eigenvalues for a and c are complex in general; this corresponds to 
disturbances growing or decaying with downstream distance and is the spatial 
stability problem. A combined stability analysis that involves complex frequencies 
and wavenumbers is in principle possible. It has been observed, however, both 
experimentally and from numerical calculations (e.g. Mattingly & Criminale 1972) 
that spatial growth rates describe the stability characteristics very well. Temporal 
results may be connected via the Gaster group velocity transformation (Gaster 1968) 
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to yield spatial results in a few limited ranges (see later comments). It should be 
noted that our asymptotic results of $83, 4 and 5 are consistent with the comments 
above, since the growth rates in these analytical regimes are small (in fact 
asymptotically so) and as a consequence the Gaster transformation is valid. 

As mentioned in the previous sections, the most unstable modes are observed to 
be the sinuous ones, i.e. those having stream functions that are even about the wake 
centreline. This limits the numerical range of integration to the upper half-plane and 
thus halves computational times. The range of dependence is taken to  be 0 < y < y,, 
where ym is a suitably large number. The unperturbed flow for the different 
calculations will be discussed in detail later on in this section. 

The object is to solve the Rayleigh equation (2.1), and in particular to find the 
eigenvalues for the appropriate boundary conditions. The range (0, y,) is divided into 
J equal subintervals of length h. The velocity profile is now approximated by a 
piecewise linear distribution in each of the intervals, a fact that simplifies the 
Rayleigh equation in each interval considerably since the a'' term is zero. Hence if 
the discretization points are yi : j = 1 + Jf 1 with y1 = 0, yj+l = ym, then the stream 
function in the interval (yj, denoted by $ ( j ) ,  satisfies 

(6.1) The solutions are 

where A,,B, are constants to be determined. These are two equations that connect 
the values of A,, Bj in neighbouring intervals. These come from continuity of mass 
flux and pressure across points of discontinuity (ti' is discontinuous at y = yj), and are 

(Aj+B,)/(ai-c) = (A,-leah+Bi-le-"h)/(Gj-c), ( 6 . 2 ~ )  

- I Z - ( A ~ - ~  eah+Bj-le-ah), (6 .2b )  

respectively, where iij = ti(y = yI), is the velocity gradient in the interval above 
and below y = yj. The system (5.2a, b )  together with the boundary conditions of 
decay at  infinity and evenness of $ a t  the origin, fix the eigenvalue problem for a 
and c. The condition a t  infinity (y = yJ+l) is 

A ,  eah + B, ePah = 0. 

The boundary condition a t  the origin requires a little more care, however, depending 
on the underlying basic flow. I n  most of the calculations presented here the basic flow 
satisfies @'(y = 0) = 0 (proper wake profiles), but for cornpleteness we also consider 
a double Blasius distribution which gives the distribution in the limit x + 0. For wake 
profiles in x > 0 the condition a t  y = 0 becomes 

$(y = 0) = constant, 

$ ( j )  = A ea(Y-Yj) +B. e-a(U-Uj) 
I 3 

a(uj-c) (Aj-Bi)-ai+(Aj+Bj)  = a(ai-c) (Ajpl e"h-Bj-l ecah) 

whereas for the double Blasius form holding a t  the outset x = 0 we obtain 

where h is the slope of the Blasius distribution a t  the origin, and ~ ( 0  + ) = $(O - ) = q. 
The difference equations (6.2a, b )  can now be used to obtain the values of the A,, BI. 
Numerically this is done by Newton iteration since the system is nonlinear with 
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FIGURE 3. Unperturbed velocity profiles a t  different streamwise positions. The flow is symmetric 
about y = 0. Profiles are shown, from left to right, a t  6 = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 
and 1.0. 

respect to the A,, Bi and c .  In other words initial guesses are made for the unknowns 
and linear increments are calculated by solution of a system of linear equations. The 
system is solved by matrix inversion. Eigenvalues can be obtained in this way for 
both temporal and spatial stability. The numerical parameters J ,  h and ym are 
varied to establish numerical convergence of the method. Before a description of the 
results we present some details on the basic flow profiles used in the computations. 

The unperturbed flow in the wake considered here is a solution of the boundary- 
layer equations subject to wake boundary conditions. The governing equations are, 
therefore, in the usual boundary-layer notation 

uu, + vu, = Ugg,  

us+ v, = 0, 

U,(X, y = 0) = 0, V(Z, y = 0) = 0, U(X, 00)  = 0. 

The starting condition a t  x = 0 is 

where U,(y) is the Blasius velocity distribution. This is required in the matching of 
the wake to the trailing-edge flow. 

The asymptotic results of Goldstein, already discussed in $3, can be utilized in a 
way that captures the delicate physical mechanisms in the vicinity of the trailing 
edge and the wake centreline and so enable the efficient and accurate computation 
of the flow. Such methods have been developed, for different boundary-layer 
problems, by Keller & Cebeci (1971) and Smith (1974) for example. Calculations of 
symmetric wakes employing adaptive-grid methods have been carried out by Cebeci 
et al. (1979), and we make a comparison of our results with theirs. 
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FIGURE 4. Streamwise variation of centreline velocity in the unperturbed wake. From 6 = 0 to 
6 = 1 the value of uCenlre/6 is shown. For 6 2 l ~ , , , ~ ~ ~  is plotted. 0 ,  indicates results from the 
calculations of Cebeci et al. (1979). 

Some of the calculations for the streamwise component of the flow U ,  a t  increasing 
downstream stations, are shown in figure 3. The transition from Blasius flow to a 
wake flow is evident and the downstream-infinity value for U is unity. In figure 4 the 
streamwise variation of centreline velocity obtained from our calculations is shown. 
The results of Goldstein and Cebeci et al. are indicated for comparison and agreement 
is excellent. In  what follows, the stability characteristics of the flow at  different 
streamwise positions are computed. The computations take into account the non- 
parallel nature of the flow by a quasi-parallel assumption, and use the proper wake 
profiles as given by the governing equations. Since linear stability is considered here, 
profiles lying in a region 0 < x < xo may be used, where xo is the extent of the linear 
regime. The value of xo has been determined experimentally by Sato & Kuriki (1961) 
and for large Reynolds numbers i t  is approximately one fifth of the plate's length ; 
in other words about 0.2 in non-dimensional terms. 

7. Results and discussion 
First we show some results for the double Blasius distribution holding right a t  the 

start of the wake. The aim is to provide a comparison between numerical and 
asymptotic solutions, and in particular to verify the range of validity of our 
asymptotic expansions. Temporal calculations are therefore performed. Figures 5 (a )  
and 5 (b )  show a comparison of numerical and asymptotic results in the cases a --f 00, 

a+O; in the former case the distribution of c, against a is shown and in the latter 
that of ci against a. The leading-order asymptotic results of 993,4 are used and 
agreement is seem to be fairly good. In  the eigenvalue calculations of long waves, it 
becomes both expensive and inaccurate to compute solutions for a too small (a  - 
lop3 say), because a grid of extent O(a-') is required in order to capture the physics 
of the problem. In addition to this, terms of O(a) are ignored and so it is not 
surprising that the agreement between asymptotic and numerical results in the long- 
wave case is not as striking as the short-wave results where the error term is O(ap3) ,  
a % 1. In  figure 6 the temporal growth rate and wave speed are depicted for the 
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FIGURE 5. Comparison between asymptotic results and numerical calculations. ( a )  Short waves. 
Variation of Re (c) with wavenumer. ( b )  Long waves. Variation of Im (c) with wavenumber. Curve 
(i) asymptotic, curve (ii) numerical. 
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FIGURE 6. Temporal stability of the double Blasius distribution. Curve (i) variation of c, with a. 
Curve (ii) variation of c, with a. 

double Blasius profile, for a full range of wavenumbers. The maximum growth rate 
is seen to  be attained a t  the long-wavelength end of the neutral curve. 

As mentioned earlier, spatial stability calculations are more relevant physically 
than temporal ones, unless the temporal growth rates are small enough that the 
Gaster transformation may be used to  connect the two situations. As this is not the 
case in the near wake where the disturbances first experience substantial growth, we 
choose to concentrate on spatial stability. Figure 7 shows a collection of curves a t  
various streamwise locations. The streamwise coordinate indicated is 5 and is given 
by 6 = xi, where x is non-dimensional distance from the trailing edge. The curves 
depict the variation of spatial growth rate ( -ai) as a function of frequency w.  The 
smallest value of 6 at which eigenvalues were computed is 0.02. This corresponds to  
a distance 0.000008 from the trailing edge. The maximum growth rate is seen to 
decrease with streamwise distance and is attained at  larger values of the frequency. 
As a consequence the unstable band of frequencies broadens but the maximum 
growth rate decreases. Our computations do not seem to indicate a streamwise 
position where the spatial growth rate is a maximum, but instead such a point moves 
towards the trailing edge. 

In  order to  compare with experiments and previous calculations, the stability of 
the basic flow a t  the position x = 0.1 is computed in detail. This station is chosen to 
coincide with the experimental station of Sat0 & Kuriki (referred to as S & K). A 
considerable number of theoretical results have been predicted by Mattingly & 
Criminale (referred to as M & C), based on empirical basic flow profiles. The profiles 
used by them, however, seem to deviate from the appropriate theoretical ones of 
Goldstein and of the present computations (for example, at z = 0.5 the centreline 
velocity of M & C is about half the theoretical one; see figure 4 of M & C). S & K also 
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FIGURE 7. Spatial stability of proper wake profiles at various streamwise positions. The graphs 
show the spatial growth rate -aI as a function of the frequency w .  Curve (i) is at 5 = 0.02, (ii) 0.03, 
(iii) 0.04, (iv) 0.05, (v) 0.06, (vi) 0.07, (vii) 0.08, (viii) 0.09, (ix) 0.1, (x) 0.2, (xi) 0.3. 

fit a profile to the observed flow and calculate its stability via the Rayleigh equation. 
This is done for temporally growing waves which are then compared to experiments 
by the group velocity transformation, which in our view represents an irrational step. 
I n  figure 8 we show our spatial calculations at the non-dimensional station x = 0.1 
(S & K experiment was a t  x* = 30 mm for a plate of length 300 mm), and compare 
with S & K theory and experiment. The graph shows the spatial growth rate ( -ai) 
as a function of the frequency w .  Agreement is quantitatively not as good as would 
be desired but given the fact that the theory is linear and parallel (at a frozen 2- 
station) agreement is qualitatively good. Figure 9 shows the variation of cr, a, with 
frequency as found in our calculations and by S & K. Another comparison of our 
theoretical predications and the experimental results of S & K is shown in figure 10. 
Here the streamwise growth in amplitude of the spectral components of the 
disturbances is shown. These are calculated as follows. For the appropriate non- 
dimensional forcing frequency of an experiment, eigenvalues of the Rayleigh 
equation are calculated a t  a given x-station. The amplitude of the disturbance a t  a 
given position is proportional to exp ( IaJRiX).  The position X is now increased and 
the growth factor is noted. For different streamwise positions, therefore, the lines of 
growth can be calculated by the use of correct profiles in the Rayleigh equations. 
These are the lines labelled * and are compared to those of S & K. 

It can be seen from the results in figures 6-10, that agreement between the linear 
theory and the experimental findings is quite good. At first sight it might seem that 
the temporal-stability approach together with the Gaster transformation provides a 
good description of the instability but although the agreement produced is 
qualitatively good for distances far enough from the trailing edge, it is not so closer 
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FIGURE 8. Spatial stability of the wake at z = 0.1 (5 = 0.465). Variation of -ai with w .  Curve, 
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FIQURE 10. Lines of growth of the disturbances. Comparison between theory and experiment. 
Sato & Kuriki experiments: 0, excitation 650 c / s ;  A, excitation 850 01s; *, present theory. 

to the trailing edge where the spatial growth rates are no longer ‘small’. Hence the 
full spatial-stability analysis does seem necessary. 

Our neutral stability results can also be compared with the experimental results of 
S & K. They measured velocity fluctuations in the wake using hot-wire anemometry 
and presented oscillographic records of the u-fluctuations (see figure 5 in that paper). 
One of the traces (z = 30 mm, y = 1 mm) exhibits neutral behaviour with frequency - 800, for a free-stream velocity uz = 10 ms-l. This implies that the dimensional 
frequency of oscillation, o* say, is 2n x 800 - 5024 Hz. The Reynolds number for the 
experimental flow is Re - 2.3 x lo5. If we denote the plate length by I* ,  then E* = 
0.3 m and the boundary-layer thickness Z*R$ is approximately 1 mm. The 
dimensional form of the time is t* = l *R$T/u~ ,  where T is the non-dimensional time 
used in the linearized Euler equations when the Rayleigh equation was derived. Thus 
linear waves have time dependence of the form 

Hence our theoretical result predicts a frequency w* = p(uz/l*) R!, where p = A( = 
0.332 ...) from (5.5); notice that /3 has this value, to leading order, in the case of 
short waves also (cf. (3.5)) which are almost neutral anyway. This value works out 
to be w 5200 Hz, in quite good agreement with the above experimental value of 
5024 Hz (relative error x 5 % ) .  

The numerical calculations based on the Rayleigh equation and proper wake 
profiles provide fair agreement with experimental data, then. Our results indicate 
further that a spatial stability analysis is appropriate here, as is also the case for the 
related problems of jet and free shear-layer stability. 
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With the linear stability results and structures available now for the asymp- 
totically correct wake profiles, it is possible to proceed rationally into the 
nonlinear regime. Perhaps the most interesting case indicated by experiments, and 
on theoretical grounds, concerns the nonlinear evolution of long waves and this is 
being addressed in subsequent work by the authors. 

We would like to thank the referees for some useful and interesting comments 
regarding an earlier version of this work. Professor Andreas Acrivos of City College 
of New York is also thanked for some fruitful discussions. One of us (D.T.P.) 
acknowledges the receipt of a support grant from the SERC, UK, during part of this 
research. 

Appendix A 
Let $?), +p), $f), $i4) represent solutions in regions ( l ) ,  (2), (3) and (4) respectively ; 

then the governing equations are 

These can be solved, subject to the boundary condition that the disturbance vanishes 
at y = k 00 to give 

The six constants Bil), Bk2), Ilk3), BF), Ap) ,  Ak3) are determined below, from matching. 
The Goldstein layer (GL) has thickness 6 = d 6 1, and the local variable 2 is 

introduced, defined by y = €2. Hence the solution for the stream function inside the 
Goldstein layer as Z + f 00 must match with $k2), $k3) as Y + 0 k respectively. The 
solutions inside the Goldstein layer expand as follows : 

+GL = Yo+eaYl+e2a2Y2+ ..., c =a-lc ,+ec4+as2c,+ .... ( A 3 a , b )  

The basic flow is that given by Goldstein (1930), 

= qz)+E4~c(z)+0(e7), F ( Z )  - +A(z+A,), (A 3 4  
Fc(Z)-A4Z4 as z-tS.00, 

where A, is a constant, the Goldstein displacement thickness. The forms of the 
expansions above follow from matching requirements with the outer regions, but 
since there is an order-one displacement in the expansion for $s the special limit 
€a = must be chosen for 6 .  With this limit, it is seen that the expansion for the 
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wave speed is the same as that outside the Goldstein layer if q = O(1). As a referee 
points out, however, the validity of the expansion can be improved by a double 
expansion in ct-l and €a. In this case the restriction is &a 4 1.  We do not give the 
details of this here (the analysis is similar to  that presented below), but we have 
found that the final result, namely (3.7) and (3.8), remain unaltered. Matching 
leading-order terms of the stream function outside and inside the Goldstein layer 
respectively gives =Ao. Substituting (A 3a-c) into the Rayleigh equation yields 
the following expressions for the and Y, (primes denote 2-derivatives) ; 

Y1 = A0 - -F(Z)+-+T,  E l 2  Hl  
h h 

where El ,  E ,  and H ,  are constants to be determined. 

This can be equated, from matching, with the slope of 
solution. The relation obtained is 

There is a jump in the slope of the O(~-~)-outer  solution, dk3/dY, across Y = 0. 
from the Goldstein layer 

The constants E l ,  E, ,  H I  can be found by matching the Goldstein solution as (21 --f cc 
with the outer solution as Y+O+ respectively. Hence, O(ecc)-terms (i.e. terms 
involving y?h2) and $l from the outer solution) give the matching requirement 

(A 6 )  
1 
h 

B~”+A$” = - (Hl-hAoA,)  = A$+Bk3), El = 0. 

If the jump in d@,/dY is now calculated from the outer solution and the result 
equated to the jump from the inner solution given by (A 5 ) ,  the following equation 
results : 

(q) -By) + (A?) -Bp) = 2h (yo $). (A 7) 

Substitution for A ~ 2 ~ 3 ) , B $ z ~ 3 )  into (A 6 )  and elimination of H ,  gives a value for cp:  

2A0 A ,  + e -  e2S+ !$!7+225(11 - I ,  - I3  +I4) -7 
e 

where S = 6A4Ao/h and I , ,  I , ,  13, I4 are definite integrals (constants). 

Appendix B 
The expansion for $ in region I1 (yII = - ( 1 / 2 y )  In a + g ( -  co < g < m)) is 

$11 = + a$, + + . . . +&In a($l + . . .) + h.o.t., (B 1 )  

where h.0.t. denotes higher-order terms, and that for the wave speed is the same as 
before, cf. (4 . lb) .  The correct behaviour that matches (B 1 )  as q-t-cc with the 
solutions in region I is 
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The equations satisfied by $,, $2, $3, $,, together with their general solutions are 

(-&e-Yg-cl)~;+Qr2e-yg$1 = 0, g1 = Ao(-Qe-y@-cl), (B 3a) 

( - Q e-@- cl) & + Qr2 e-yg $2 = c2 I&, J 2  = -Ao c2, (B 3 b )  

(B 3c) ( - Q e-YQ - cl) 6: + Qr2 e-yg $3 = c2 $; + c3&, 

(B 3 4  
A 

( - Q e-@- c1)$:+Qy2e-yg$, = 0, $l = (-&e-yg-c,)A. 
2Y 

The solution $3 matches with that in region I (as !J+- 00, y+ 00) if 

e3 = d,. (B 4) 

As q+ 00, $1, $2 and $1 tend to constants whereas q3 behaves according to 

An outer region, I11 say, given by yIrI = a-'Y (0 < Y < 00)  is needed to complete the 
matching. The expansion is 

(B 6) + 111 - 1  - azK +a? +a:% + . . . + e--a-'yY( u/, +a;% + . . .) + h.0.t. 

The term h.0.t. includes terms of orders (aha) e-d'Yy, a:lna, a~e-za-'YY. The 
matching requirement for !& is 

(B 7)  
e 

C 1  
~ ~ - A , , c 1 - ~ Y  as Y+O+.  

The Rayleigh equation provides the solution for K ;  using (B 7) also, we find 

e 
K = - A  0 c 1 -  -2. 

C1 
K = K e - Y ,  

It follows from (B 8) and (B 4) that 

e3 = d, = -A,cf. (B 9) 

The value of d, can also be calculated from the boundary condition 1&(0) = 0. Hence, 
it is found from (4.4) that 

d, = A ,  1: (u- 1)2 dy, 

which in conjunction with (B 9) yields 

c1 = k i (  JOm (u-1)'dy):. 

Appendix C 

expansions are 
Consider first the solution in I,. Here y = eLY where Y = O(1) and 1 < Y < 00 ; the 

= + ELY, + O ( € W ) ,  (C la )  

(C I b )  iiIl = eLY + e2L2h2 Y z.. . + e-y ecLY + . . . . 
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These expansions are in powers of EL except for the term eePLy = eY+l th at can 
complicate matters. When balances between terms are set up, however, the 
importance of such eY+l terms can be accounted for correctly. In region I,, at  
O(s-lL-l) the Rayleigh equation yields 

A(Y-l)(YL-ai  %) = 0. (C 2 )  

To obtain this, the term of order eY-l is assumed to be small compared with e-lL-l. 
Since Y > 0 this holds in both I, and I, and the governing equation, at  leading order, 
is the same ((C 2)) in both regions. Next, at  O(1), we obtain 

q - a i  = 2h2 5 +2a,a, K. 
h(Y- 1) 

This is valid as long as eY-' + 1 which holds in I,, but not in I,. Hence the leading- 
order solutions in I, are 

!P 0 -  - A  0 e-aoY, (C 4 4  

It can be shown that as Y + 1 + ,  Y-1 4 1, 

U, N Do + (Y  - 1) D, + (Y  - 1) In ( Y  - 1) D, + O[ (Y - l), In (Y  - l)], (C 5 )  

where D,,D,,D, are constants and (C 5 )  can be used to continue the solution into 
region 11. 

In region I1 new coordinates are introduced by y = EL + €2, - 03 < z < 03 ; since 
Y -  1 = z / L  the following series is implied in 11; 

$, = $, +L-'$, +LP2$, + . . .  EL($^ +L-l&, + . . .) +slnL($, + L-l$, + . . .) + h.0.t. 
(C 6) 

To match with I,, the behaviour of solutions as z - t  03 becomes 

@, = Aoe-ao, 9, = Do, 
+l - -ao e-aoAo 2, @, - ;a: A,, e-ao 2,  

3, - D,z+D,zlnz, +, N - ~ , z .  (C 7 )  
The basic flow in I1 is 

= e (L+z )h+h2e2(L+z )2+yeae -Z+  ... . (C 8) 

(hz-C,) @; = 0,  (hz -c , )  $ ; -c ,  +;1 = 0 ,  (C 9% b)  

( ~ ~ - c , ) $ ~ - c , $ , - c , @ ~  = ( h z - c , ) a ~ $ , .  (C 9 4  

The solutions of (C 9u-c) that are consistent with those in I, according to (C 7) are 

(C 10) 

Substitution of (C 6), (C 8) into the Rayleigh equation, yields the equations 

$, = A ,  e-=o, $, = -ao err, A, 2, $, = $at A, e-% z2. 

At O(L) and O(1) respectively we have 

( A z - c o ) ~ ~ = h 2 $ / l f 2 h , z $ ,  = 0, (C l l a )  

(C l l b )  
(hz -c , )  $/l -c l  3: + A,  @; + A,  z@; + A,  zz@i-a; A, $, + y e-Z$g = ( 2 ~ ,  + y e-Z) $,. 
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The solution of (C 11 a )  subject to  (C 7) is go = Do, while the equation for $, becomes 

(2h,+ye-Z)A0e-ao 
$1 = h(x-c,/h) (C l i e )  

Finally, the equation for $o is obtained from a balance of O(1nL) terms in the 
Rayleigh equation and is, together with its solution that satisfies matching 
requirements with region I,, 

(hx-Go) ?Jo = 0, ?jo = -D,z. 

Equation (C 11 c) is free of singularities a t  z = co/h if 

With 6, smooth, higher-order corrections in c that  are real can be found. The 
expression (C 12) gives a correction t o  the leading-order terms of the wave speed and 
it is necessary to  show that eigensolutions can be found in the remaining regions, I, 
and 111, that match uniformly to those in IT and I,. 

It is easy to show that the solution $, matches with that in I, as z+ co. Consider 
now (C l l c )  as z+--co, in order to  match solutions between regions IT and I,. 6, 
conhains exponentially large terms in this case ; in fact 

Writing this in terms of the local variable of region I, (y = E L ~ ) ,  $,, implies a 
contribution of 0(ey- l /L)  terms to the solution in region I,. It is found, therefore, 
that the correct expansion to be formed in I, is 

€* - PI, = ly,+~L~+...+-($,+L-l$,+...)+h.~.t. 
L 

In (C 13) Yo is given by (C 4a) and 
implies 

satisfies (C 3). At O(ey-')  the Rayleigh equation 

which matches with the contribution of $, in 11. The solution of (C 3) in I, is not the 
same as that in I,, owing to the lifting of the boundary condition a t  infinity; it can 
be found as before and its behaviour analysed as Y + 1 - , to  give 

-B,+sB,+sInsB,+ ... as S + O  ( s =  i-q, 
where Do, D,,  D, involve the unknowns 01, and B,. Complete matching of solutions 
through IT to I, gives 

Bo = Do, B, = -D ,  

which can be used to find a,. 

and 

The Rayleigh equation a t  O(Ls-') and O(E-') respectively gives 

It remains to construct solutions inside the Goldstein layer. Here y = €2, 2 = O( 1) 

$111 = $ +L-' + . . - + other terms. 

-A!&; = 0, -A%+(F-C, )  !&; = F"%. (C 14a,b) 
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The solution of (C 14a) that satisfies the symmetry conditions and matches with that 
in I, is Yo = A , ,  and the solution of (C 14b) together with its behaviour for large Z is 

In (C 15) above, a, is a constant to be determined ; it can be found by consideration 
of the contributions from 'u, and e y g 0  from I, as Y + O + .  This gives 

, a, = 1. AOAG a, = - 
h 

Higher-order solutions can be obtained in a similar manner. 
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